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Intensity effects on inverse-bremsstrahlung electron acceleration
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The effects of beam intensity on the laser field on inverse-bremsstrahlung electron acceleration are investi-
gated. A self-consistent Hamiltonian formalism that takes into account both particles and wave dynamics is
developed. It is shown that efficient acceleration is achieved for high-density beams. However, for such high
densities, beam plasma effects impose a limitation on energy gain. A method is proposed in order to remove
the limiting effects[S1063-651X98)04108-7

PACS numbeps): 41.75.Ht

I. INTRODUCTION Il. MODEL DESCRIPTION

We consider a beam of electrons of charge and mass
With the advent of powerful coherent radiation-generationm interacting with an applied plane electromagnetic wave
systems a good deal of effort has been directed to the analpropagating in thex direction and an applied electrostatic
sis of new concepts for particle acceleration that can overfield pointing along the direction. The vector potential that
come the acceleration gradient limitations of current lineaidescribes the electromagnetic wave is written as
accelerators[1]. Among different methods proposed for
laser-particle acceleration a promising branch is the one i——lA ion
. e . ) = e'“e+c.c., D
where particles and electromagnetic fields interact directly mc? 2
without the aid of dielectrics or plasm2-7], because of
the difficulties to control instabilities and other damagingwherec is the speed of lighin vacug ¢=wt—kx, with
effects generated by the presence of such media. In particleing the wave frequency ard= w/c the wave numberA
lar, Kawatana and co-workers introduced the concept ofs the complex wave amplitude, and c.c. stands for complex
inverse-bremsstrahlung electron acceleratiéh where a conjugate. The wave electric and magnetic fields are then
small electrostatic field applied perpendicular to a propagatdiven by —Ewae=E,&  and Buae=B.€, with
ing electromagnetic wave breaks the symmetry in the oscilEy=B,=i£e'¥/2+c.c. andc=mcw.A/e. Normalizing space

latory wave-particle interaction. They showed that with(© 1K, time to 1k, energy tomc?, momentum tanc, vec-
ic fieldor potential toe/mc?, and electric field t@/mcw, the dy-

amics of theith electron in the beam is described by the

strength, net ener ain is obtained in one cycle of th A : L
g 9 9 y ollowing particle Hamiltonian

wave. By analyzing the nonlinear equations involved in the
single-particle wave interaction, Hussein and F&pdem-
onstrated that by alternating the direction of the applied elec-
trostatic field at appropriate positions, the acceleration is exs
tended for more than one wave cycle, leading to high energy
gain. They called this scheme as nonlinear .amplification of ')’i:{1+P§i+[Pyi+Ay]2+ Pgi}l/z 3)
inverse-bremsstrahlung electron acceleratiddAIBEA).

Subsequent analysis on the wave-particle interaction basgd the relativistic mass facto®,=p,—A is the canonical
on particle-in-cell simulations indicated that although spacemoementum, withp, being the mechanical momentum, and
charge forces are negligible, beam current effects on the_ s the normalized applied electrostatic field in the
electromagnetic fields may play an important role in the acdirection. The energy equation for the particle is readily ob-

celeration procesi8]. tained from Eq.(2) as
In this paper we further investigate beam current effects

in the NAIBEA scheme. A self-consistent Hamiltonian for- Hi: —vyiEy, (4
malism that takes into account both particles and wave dy-

namics is developed. It is shown that if, on one hand, inwhere the dot stands for derivative with respectttand
creasing densities are necessary in order to achieve efficient=p;/y, is the normalized(to c) particle velocity. The
acceleration, on the other hand, it causes beam plasma effAIBEA scheme consists of alternating the sign of a prop-
fects to become pronounced, setting certain limits on therly choserE,y, at the positions where the phagesatisfies
energy gain. A method is proposed to overcome these limip=(2n+1)7/2, n=1,2,... . With this alternation, one
tations. The paper is organized as follows. In Sec. I, weshows that the right-hand side of E@) is always positive
introduce the model and derive the wave-particle dynamicaleading to continuous particle energizatidj.

equations; in Sec. lll, we present the results obtained from To self-consistently take into account the effects gener-
the numerical analysis, and in Sec. IV we conclude the workated by beam current on the electromagnetic fields we apply

Hi=v+Eapyi, ¥l

ere
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a formalism which is similar to that employed in R¢€]. In the above Hamiltonian formalism the equations of motion
We start from Maxwell equation for the vector potentim  for the particles and the wave quantities are given, respec-
normalized form tively, by
3 9 47e’k ; : Xi=dHIIPyi, Yi=dHIIPy, z;=dHIdPy,
a2 Tme © | | |
PXi: - aH/aXl y Pyi = — H/(?y| y PZi: 0, (14)
where
and
N
Jy=— 2 vyi() 8 —ri(1)) (6) = oH - M
=1 == P (15

is they component of the electron current density, which has —_ - . .
been normalized teclk®. Here, N is the total number of wherea andp play the role of canonically conjugated coor-

prtces in he sysem, ani() s he nsiananeous - RS S0 RN et L
placement of theth particle. From Eq(5) one readily de- Y 9 g-

. . . . (12) that the energy exchange between particles and electro-
rives a slow-time scale evolution equation for the complex : .

: magnetic wave obeys a conservation law of the fpd|
wave amplitude as

— N
) a2 Np
_ 4mie’k f 3,610 g, @ 7+i21 (7 + Eqpi) = const. (16)

T mcVT

where a Fourier transform over the fagrimed variables ~ Note thatmc*(Np/2)=u,.eVq is the total electromagnetic
has been performed introducing the voluMand periodT.  energy stored in the wave, wheug,,=|€|*/8w is the wave
Using the polar representation for the wave amplitudeenergy density an¥y=V/k® is the dimensional volume.
A=/pe'?, Eq.(6), and the relation

Ill. RESULTS OF THE ANALYSIS
Pyi+Ay[Xi(t,)vt’]

(8 In order to analyze the self-consistent interaction in a
Yi NAIBEA scheme, we numerically integrate the set of equa-
tions (14) and (15). We model the interaction considering a
cold beam ofN electrons per wavelength of the laser field,
homogeneously distributed along tledirection. We con-

vyi(t,):

we can rewrite Eq(7) in the form

N
e 4 [Pyi—p codt—x+0)] cogt—xi+ ) sider a specific example discussed in previous pdetd],
\/EN i=1 Yi ' ' namely, a 10um wavelength laser with electric field ampli-
(9) tude|&|=1.636x10° Vicm, which corresponds to an inten-
sity of 3.5x 10'® W/cn?. The strength of the applied electro-
26\p & [Pyi—p codt—x+0)] static field is |E,pd=4.28x107°|&|. The electrons are
P=TTN 21 " sin(t—x;+ o), injected with an energy corresponding j0=106.8 at an

(10) angle of 0.608° with respect to theaxis. For this case, the

single-particle(not self-consistentanalysis, based on Eq.

where use has been made of the conditiogs~1 and (2. reveals thatan electron initially 2(0)=0 attains a final
||5yi|=|Eap;J<1- The effect of the electron current density energy corresponding to=3850 after 96 cm of interaction

on the electromagnetic fields appears through the parametWh?n Oneé Inversion in the sign (EaPP 1S performe(_j._The
optimal position for the electrostatic field reversidie.,

5= wg/wz (12) when ¢=37/2) is found to be 32.8 cm from the injection
' point.
where wi=4me’n./m is the beam plasma frequency . Now we investigate what happens when the wave dynam-
squared, witt, being the average electron density ics is taken into account. We consider two distinct cases, a
, e . . . _ —8 . .
An interesting point is that rescaling the wave dynamicallow'denSIty beam witld=5x10 * and a high-density beam

a ks i —10-3
quantities according te= 207N and p=8p one concludes with §=10"°. We note that although the values éfare

that all relevant dynamical equations for both particles andj'ffe.rent from those fognd n Refll], they cqrre;pond to
equivalent beam densities since the normalization adopted

glevlgf] bC;n be derived from one generalized Hamﬂtomanthere introduces a factor ofi232~0.2 in the definition ofs
[compare Eq(20) in [11] with Eqg. (11) in this pape}. In Fig.
N N 1 we show the results obtained for the self-consistent inter-
H= 2 H= 2 [ i+ Eapil, (12) action withN =50 particles per wavelength when one inver-
=1 i=1 sion inE,p, is performed at the optimal position determined
by the single-particle analysis. The number of particles in the
yi={1+PZ+[P,i—\6p cogt—x;+20/N)]?+ P2}12 simulation is chosen to obtain convergéntdependent oN)
(13 results for the wave dynamical quantities. To compare self-
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n b FIG. 2. Wave amplitude anighg particle energy as a function of
®) the interaction distancs for the high-density casé=10"2 when
the inversion inE,,, is performed at the optimized position
s=28.0 cm. Remaining parameters are the same as in Fig. 1.

N spite the large particle energization, it should be pointed out
that the acceleration process for low densities is cleagf
ficient since little energy is transferred from the wave to the

0 particle beam.
0 20 S0 120 For the high-density case with= 103 (solid curves,
s (cm) however, the acceleration process is dramatically affected by
the wave dynamics. Figure(d shows that the wave is se-
0.9 © verely damped as it interacts with the particle beam, trans-
SN ferring up to 70% of its initial energy to the beam. As a
| result of wave depletion, the instantaneous rate of energy

s 06 change given by Eg4) is reduced, and the maximum en-

S ergy obtained by théag p_article is depreaseq tp= 350[see

™ Fig. 1(c)]. Although the final energy in the high-density case
is much lower than that in the low-density case, it still rep-
resents a good acceleration with gradients on the order of
hundreds of MeV/m.

0.0
0

40 80 120 By examining the high-density case in more detail, one
s (cm) readily finds another reason for the limited particle accelera-
tion, besides the wave depletion. Figuréb)lshows that
beam plasma effects cause the wave phase velocity to in-
crease, which is indicated by a nearly monotonic increase in
inversion inE,,, is performed at the position determined by the o. Because phase synchronOLE IS requ.lred In t.he NAIBEA
single-particle analysis=32.8cm. The laser is a 1@m wave- scheme, even small changes ancan drive pa_lrtlcles and
length with an initial amplitudée| = 1.636< 16° V/cm, and the ap- Wave out of phase, eventually changing the sign-afyE,
plied electric field is given byE ] =4.28<10°5|€]. The simula- N EQ. (4) and ceasing the acceleration process.
tions are performed with'=50 particles per wavelength. To overcome the limitation on particle acceleration im-
posed by the beam-plasma-induced phase shift, we notice,

. . ) . .from the generalized Hamiltonian in E(L2), that the effec-
consistent results with single-particle results, one particle is

chosen among thd particles as dag particle whose energy
is monitored during the acceleration. Thag particle is
launched exactly wittkx(0)=0 (which is the initial condition
used in the single-particle analysiThe figure presents the 3
amplitude(a) and phaseb) of the wave, and the enerdin ’>\\
terms ofvy) of thetag particle(c) as a function of the dimen- £
sional interaction distance=x/k for both the low-density 4t
case (dashed curvgs and the high-density casésolid
curves.

For the low-density case withd=5x10"8 (dashed 0
curves the wave is essentially unaffected by the presence of 0.0 01 02 107 0.3 04 05
particles, withp and o keeping their values unchanged Y
throughout the interaction, as seen in Fig&) land Ib). FIG. 3. Energy distribution functionf(y) obtained for
Hence, the acceleration shown in Figc)lagrees with that s=67.8 cm andN= 1000 particles per wavelength when the inver-
found in the single-particle analysis where a maximum ension in Eapp is performed at the optimized positics=28.0 cm.
ergy corresponding teg=850 is attained a8=96.0 cm. De-  Remaining parameters are the same as in Fig. 2.

FIG. 1. Amplitude(a) and phaséb) of the wave, and energy of
the tag particle (c) as a function of the interaction distansg for
5=5x10"8 (dashed curvesand §=10"2 (solid curve$. Here, one
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tive wave phase seen by the particlespis= ¢+ 20/N in- IV. FINAL REMARKS
steaid ofe. Thus, by_changmg the sign @y, according to To place the above results into certain perspective, two
osc=(2n+1)7/2, n=1,2,..., we cancompensate self-

consistent variations of the wave phase, thereby prolonginremarks are in order. First,. although the res_ults in this paper
the acceleration process. ' dre obtalr_1ed f_or the particular laser particle acceleratlpn
To test the efficacy of the compensation procedure, Weschem_e, ie., mverse-k_Jre_msstrathng electron_ acceleration,
consider the high-density beam example presented in Fig. gne might expect that similar effects may occur in other laser
Integrating the self-consistent set of equatiéié and(15) ccelerator schgmes. Secor}d, the formalism developed here
we readily obtain the interaction distance for WhiCI"l may be.generallzed to describe a phgsed array of [aser beams
interacting with an electron beam in a NAIBEA scheme,

osc= 372 is satisfieds=28.0 cm. In Fig. 2, the wave am- which was ; ; :
> ==, ) proposed in Refll] in order to avoid the laser
plitude p (solid curve and thetag particle energyy (dashed diffraction problem.

cErve aée sth?hwn as:[_a fungtion c_atffor tgg ((:)ase WgerEaPP i_s In conclusion, we have investigated the effects of beam
Ch ange al e r(])phlmlze _Posi '(mzl ; I(::r_n. ];)n:jparmg intensity on the laser field on the NAIBEA scheme. In par-
these results with the previous results in igs) Bin ?(C)’ ticular, a self-consistent Hamiltonian formalism that takes
solid curves, one ob;erves apparent improvements in the ffito account both particles and wave dynamics has been de-
celgratlon process with a 20% Increase in the total energ eloped. It was found that high particle gain and efficient
delivered by the wave to the particle beam, as well as a 3008nergy exchange between wave and particles can be
increase in the energy attained by tag particle. To better achieved simultaneously for high-density beams if beam

analyze the overall efficiency of high-density beam acceler dlasma effects are judiciously taken into account
tion, we also perform a simulation with the same parameter '

used in Fig. 2, using a larger number of particles:
N=1000. The particle energy distribution functidfry) ob-

tained fors=67.8 cm is presented in Fig. 3. Although beam  The author thanks Dr. C. Chen for valuable discussions
heating takes place, the fact that 20% of the particles arand a careful reading of the manuscript. This work was sup-
accelerated beyongl=400 demonstrates the efficacy of the ported by CAPES, Brazil, and in part by the U.S. Depart-
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